Изобретение относится к нейрокибернетике и может быть использовано в искусственных нейронных сетях при решении различных задач обработки данных, таких как обработка изображений и распознавание образов, предсказание сигналов. Техническим результатом является обеспечение возможности реализации (аппроксимации) моделью нейрона любой заданной булевой логической функции из полного их набора от n переменных (обеспечение функциональной полноты модели нейрона). Способ моделирования нейрона основан на том, что в весовых блоках вычисляют квадраты евклидова расстояния от вектора входа до каждой из 2n вершин единичного n-мерного куба, затем величины, обратные этим расстояниям, перемножают соответственно с компонентами целевого вектора, после чего суммируют в сумматоре и преобразуют в активационном блоке функцией активации. 6 ил., 1 табл.