RU 2103502 C1, 27.01.1998. RU 2249691 C1, 10.04.2005. RU 2148168 C1, 27.04.2000. RU 2154162 C2, 10.08.2000. SU 1357795 A1, 07.12.1987. SU 1060791 A1, 15.12.1983. SU 1728476 A1, 23.04.1992. SU 1514921 A1, 15.10.1989. SU 1831565 A1, 30.07.1993. US 3908761 A, 30.09.1975. US 5337821 A, 16.08.1994. US 3834227 A, 10.09.1974.
Имя заявителя:
Государственное образовательное учреждение высшего профессионального образования Российский государственный университет нефти и газа им. И.М. Губкина (RU)
Изобретатели:
Браго Евгений Николаевич (RU) Великанов Дмитрий Николаевич (RU) Южанин Виктор Владимирович (RU)
Патентообладатели:
Государственное образовательное учреждение высшего профессионального образования Российский государственный университет нефти и газа им. И.М. Губкина (RU)
Реферат
Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано для измерения дебита двухфазных потоков эксплуатационных газовых, газоконденсатных и нефтяных скважин. Информационно-измерительная система расхода фаз газожидкостного потока, характеризующаяся тем, что она содержит датчик флуктуации давления газожидкостного потока, выход которого соединен с усилителем заряда. Выход усилителя заряда подключен к входам первого и второго масштабирующего измерительного усилителя соответственно для высокочастотных и низкочастотных флуктуаций давления, выходы которых соединены с входами соответственно первого и второго активного полосового фильтра. Выходы первого и второго активного полосового фильтра подсоединены к первым информационным входам первого и второго аналого-цифрового преобразователя (АЦП). Выходы первого и второго АЦП подключены соответственно к первым информационным входам блоков определения информативных высокочастотных параметров потока и информативных низкочастотных параметров потока, первые управляющие выходы которых подсоединены ко вторым управляющим входам первого и второго АЦП. Причем блок определения информативных низкочастотных параметров потока связан по третьему информационному входу и третьему управляющему выходу соответственно с выходом и первым управляющим входом третьего АЦП. Второй информационный вход третьего АЦП подсоединен к выходу аналогового мультиплексора. Первый, второй информационные и третий управляющий входы аналогового мультиплексора соединены соответственно с датчиками температуры и давления контролируемого потока продукции скважин и с четвертым управляющим выходом блока определения информативных низкочастотных параметров потока. При этом вторые информационные выходы блоков определения информативных высокочастотных параметров потока и информативных низкочастотных параметров потока подключены к информационным входам блока формирования вектора входных переменных нейросетевых моделей. Первый и второй управляющие выходы блока формирования вектора входных переменных нейросетевых моделей подсоединены ко вторым управляющим входам блоков определения информативных высокочастотных параметров потока и информативных низкочастотных параметров потока, а третий информационный выход - к входам блоков нейросетевых моделей расхода газа и жидкости. Выходы блоков нейросетевых моделей расхода газа и жидкости соединены соответственно с первым и вторым входами блока индикации и с первым и вторым входами блока интерфейса связи. Техническим результатом является повышение точности раздельного определения газовой и жидкостной фаз в широком диапазоне изменения режимов потока за счет возможности учета неограниченного числа частотных полос спектра флуктуации давления потока в широком частотном диапазоне. 4 ил.